Навигация

 

 Меню раздела

Основные условные обозначения
Индексы
Сокращения в тексте
Наименования организаций
Энергетический блок ТЭС или АЭС
Внешние регулируемые величины блока
Принципы регулирования энергоблоков
Математические модели и структурные схемы
Принципы моделирования
Аналоговые и цифровые модели
Цифровое моделирование
Способы получения математических моделей
Динамические свойства блоков
Полу эмпирические модели
Процесс эксплуатации
Типовые возмущения
Типовые звенья и структурные схемы
Элементы автоматического регулирования
Нелинейные звенья
Гармоническая линеаризация
Моделирование регуляторов
Математическое регулирование паротурбинных установок
Уравнение ротора
Моделирование паровых объемов
Моделирования влажно-паровых объемов
Моделирование поверхностных подогревателей
Применение операционного исчисления
Водяной тракт подогревателя
Точность математической модели
Моделирование парового пространства подогревателя
Масса конденсата греющего пара
Моделирование смешивающих подогревателей
Особенности моделирования конденсатора
Эквивалентирование подогревателей
Моделирование турбогенераторов
Моделирование энергосистем
Математическое моделирования парогенераторов
Моделирование системы топливоподачи
Моделирование топки
Моделирование конвентивного газохода
Моделирование активной зоны реактора
Уравнение кинетики реактора
Моделирование промежуточных контуров
Температуры теплоносителя в теплоотдающей части
Компенсаторы объема
Моделирование парогенераторов с многократной циркуляцией
Моделирование прямоточных парогенераторов
Моделирование питательного клапана парогенераторов
Структурные схемы парогенераторов
Сопротивление тракта пароперегревателя
Уравнение паропровода
Динамика регулирования энергоблока
Моделирование газового промперегревателя
Моделирование парового промперегревателя
Регулирование блоков в мощных энергосистемах
Автоматическое регулирование возбуждения
Мощностные характеристики турбогенераторов
Плановые и неплановые изменения нагрузки
Регулирование частоты в энергосистеме
Регулирование мощности
Регулирование перетоков мощности по МСС
Статическая устойчивость
Взаимное согласование параметров РОМ и АСР турбины
Динамическая устойчивость
Требования к статическим и динамическим характеристикам
Регулирование паровых турбин
Динамические характеристики мощных паровых турбин
Влияние паровых объемов
Амплитудно-фазовая характеристика системы
Влияние промежуточных объемов
Динамические характеристики влажно-паровых турбин
Роль парового промперегрева
Импульсные характеристики турбин
Система регулирования мощных паровых турбин ПО ЛМЗ
Системы регулирования турбин ХТГЗ
Система снабжена ЭГП
Влияние системы регенеративного подогрева
Динамическая структура объекта регулирования
Динамика регулирования при наборе нагрузки
Регенеративные отборы пара
Регулирование котлов
Регулирование питания прямоточных котлов
Регулирование температуры перегрева пара
Возможности регулирования температуры перегрева
Аккумулирующая способность котла
Настройка отдельных регуляторов
Принципы регулирования ядерных реакторов
Возрастание потока нейтронов
Регулирование нейтронной мощности
Система управления и защиты
Борное регулирование
Роль температурного эффекта реактивности
Неоновое отравление реактора
Регулирование конденсаторных энергоблоков
Взаимное влияние парогенератора и турбины
Математическая модель ядерного энергоблока
Контуры регулирования основных регулируемых величин
Регулирование энергоблоков ТЭС
Передаточная функция и частотные характеристики
Первичное управление котлом
Корректирующие связи в системах
Форсирующие связи
Стабилизирующие связи
Физическая природа
Регулирование энергоблоков
Схемы с задающим регулятором
Управление клапанами турбины
Динамические свойства энергоблоков
Первичное управление котлом
Комбинированное регулирование
Первичное управление котлом
Повышение эффективности участия блока
Типовые схемы АСР энергоблоков
Особенности регулирования энергоблоков АЭС
Недостатки программы регулирования
Применение программы
Блоки с канальными реакторами
Регулирование теплофикационных энергоблоков
Рациональный способ использования пара
Принцип автономности
Физические основы автономного регулирования
Характерные режимы теплофикационной турбины
Критерии автономности
Необходимое условие автономности системы
Условие полной автономности
Схемы регулирования теплофикационных энергоблоков
Нарушения автономности
Схемы регулирования теплофикационных энергоблоков
Электрическая часть АСР
Обще-блочное регулирование
АСР теплофикационного энергоблока
Статическая точность
Привлечения конденсационных энергоблоков ТЭС
Выбор программы регулирования энергоблоков АЭС


Регенеративные отборы пара как скрытый вращающийся резерв энергосистемы

Временное отключение регенеративных отборов пара—один из простых и эффективных способов быстрого получения дополнительной мощности [108]. При этом пар, ранее поступавший в подогреватели, проходит в проточную часть последующих ступеней турбины, вырабатывая дополнительную мощность, что особо актуально для энергоблоков, работающих при скользящем начальном давлении, а также при необходимости использования регуляторов «до себя». Отключение пара регенеративных отборов помимо рассмотренного прямого увеличения мощности ведет к отсечению паровых объемов подогревателей и трубопроводов, инерция которых снижает скорость набора нагрузки при открытии регулирующих клапанов турбины.
Конечно, следует иметь в виду, что существуют определенные ограничения режимов, при которых допустимо отключение регенерации, обусловленные, в частности, надежностью работы лопаточного аппарата последней ступени и упорного подшипника. Для изыскания возможностей расширения диапазона режимов, допускающих отключение регенерации, ведутся многочисленные исследования. В частности, результаты работ ЦКТИ и Средазтехэнерго показывают возможность отключения ПВД при нагрузках, близких к номинальной.
Можно выделить два основных способа отключения регенеративных отборов. За рубежом [150] нашли применение схемы, в которых питательную воду направляют в обвод подогревателей. Уменьшение теплообмена в подогревателе прекращает конденсацию пара и повышает давление, вследствие чего прекращается поступление пара в подогреватель и увеличивается мощность турбины. Такой способ отключения регенерации обладает значительной инерцией, обусловленной паровыми объемами, а также аккумуляцией теплоты в металле подогревателей и находящейся в них воде. При практической его проверке в опытах ЦКТИ на турбине ПТ-60-90/13 процесс изменения мощности начинался через 3 с после подачи команды и продолжался 30 с. Аналогичные результаты получены фирмой «Сименс» [154] на конденсационном блоке 80 МВт.
Указанный способ отключения регенерации не устраняет вредного влияния паровых емкостей системы регенерации при открытии регулирующих клапанов турбины. Изменение температуры питательной воды происходит с большой скоростью (22 К/мин в опытах ЦКТИ), что ухудшает условия работы котельного экономайзера. Возможны также значительные скорости изменения температуры труб подогревателей, недопустимые по условиям прочности.          t..
Отмеченные обстоятельства заставляют отдать предпочтение непосредственному прекращению подачи пара в подогреватели. Для его реализации могут быть использованы обратные клапаны регенеративных отборов [108, 124]. Практическая проверка этого способа была проведена ЦКТИ, Л ПИ и Средазтехэнерго на турбинах К-300-240, К-200-130, К-100-90 и ПТ-60-90/13. Проведению испытаний предшествовала работа по наладке автоматики обратных клапанов, что позволило повысить их быстродействие до 0,4— с. В программу испытаний входило исследование работы оборудования как на частичных нагрузках, так и в режимах, близких к номинальному. Регулирующие клапаны турбин поддерживались в неизменном положении ограничителями мощности. Опыты были повторены многократно.
При закрытии обратных клапанов для исследованных турбин мощность возрастала на 10— % (рис. 5.13). Продолжительность процесса набора мощности составляла соответственно 1 и 5 с для турбин К-100-90 и ПТ-60-90/13. Мощность турбины К-200-130 повышалась на 10—11 % за 8—10 с, в том числе на 3—4 % за первые 1—2 с. Аналогичные результаты дает отключение регенерации для турбины К-300-240 [124]. Временное отключение регенерации, безусловно, не должно противопоставляться быстрому открытию регулирующих клапанов турбины. Напротив, наибольший эффект дает сочетание обоих способов.
При закрытии обратных клапанов снижение давления в подогревателях оказалось сравнительно небольшим. Это объясняется тем, что в существующей конструкции обратных клапанов усилия гидроприводов при больших положительных перепадах давлений на клапанах недостаточны для обеспечения плотного прилегания клапана к седлу. Поэтому клапаны по мере падения давления в подогревателе приоткрываются на некоторую величину. Это явление усиливается, особенно при больших нагрузках, вследствие повышения давления в камере отбора после закрытия обратных клапанов. На осциллограммах перемещения клапанов можно видеть, что после закрытия в первый момент времени
ДДПП — датчик давления промперегрева; ДМ — датчик вырабатываемой мощности; ПВД — подогреватель высокого давления; ПЗ — промежуточный золотник; ПП — промперегреватель; Р М — регулятор мощности; PC — регулятор скорости; С — сервомотор ЦВД; СО — сервомотор клапана регенеративного отбора; ЭГП — электрогидравлический преобразователь; £ — корректирующий импульс по положению клапанов регенеративных отборов клапаны приоткрываются на несколько миллиметров. Этим можно объяснить заниженное значение увеличения мощности при отключении регенерации по сравнению с ее возможным приростом согласно тепловому расчету. Изменение конструкции гидроприводов для обеспечения полного закрытия обратных клапанов или применение специальных отсечных клапанов может повысить величину и скорость набора мощности.
Наличие некоторого расхода пара в подогреватели, а также аккумуляция теплоты в металле трубок и корпусов подогревателей обусловили лишь незначительное изменение температуры питательной воды за ПВД и давления в деаэраторе при работе с отключенной регенерацией, вследствие чего не нарушается нормальный режим работы экономайзера и питательного насоса.
Движение обратных клапанов в сторону открытия (см. рис. 2.7, 6) происходит с меньшей скоростью, чем в сторону закрытия, что обусловлено конструктивными особенностями системы управления и гидропривода обратных клапанов. Клапаны полностью открываются за 4—8 с. Давление в подогревателях при этом возрастает.
Проведенные испытания подтверждают возможность использования обратных клапанов регенеративных отборов для повышения приемистости блоков. Для практической реализации этого способа отключения регенеративных отборов необходима разработка специальной системы автоматического управления обратными клапанами, которая, обеспечивая повышение приемистости блока, сохранила бы защитные функции обратных клапанов. На рис. 5.14 представлена как возможный вариант предложенная ЦКТИ [124] схема регулирования мощности, в которой импульс "ф противоаварийной автоматики энергосистемы действует на ЭГП системы управления клапанами ЧВД и на регулятор мощности, управляющий отборами пара на регенерацию.
Как правило, отключение регенеративных подогревателей с целью быстрого набора мощности необходимо на весьма короткое время, определяемое переходом парогенератора к новому режиму, после чего они снова будут включены. Обычно за столь короткий промежуток времени не возникает значительных температурных изменений в оборудовании блока.
Положительно оценивая возможность быстрого отключения подогревателей высокого давления как скрытый вращающийся резерв энергосистемы, следует вместе с тем иметь в виду, что все же оно сильно изменяет режимы как турбины, так и подогревателей. Поэтому не следует злоупотреблять этой возможностью повышения приемистости, используя ее только при возникновении действительно аварийных ситуаций в энергосистемах.