Навигация

 

 Меню раздела

Основные условные обозначения
Индексы
Сокращения в тексте
Наименования организаций
Энергетический блок ТЭС или АЭС
Внешние регулируемые величины блока
Принципы регулирования энергоблоков
Математические модели и структурные схемы
Принципы моделирования
Аналоговые и цифровые модели
Цифровое моделирование
Способы получения математических моделей
Динамические свойства блоков
Полу эмпирические модели
Процесс эксплуатации
Типовые возмущения
Типовые звенья и структурные схемы
Элементы автоматического регулирования
Нелинейные звенья
Гармоническая линеаризация
Моделирование регуляторов
Математическое регулирование паротурбинных установок
Уравнение ротора
Моделирование паровых объемов
Моделирования влажно-паровых объемов
Моделирование поверхностных подогревателей
Применение операционного исчисления
Водяной тракт подогревателя
Точность математической модели
Моделирование парового пространства подогревателя
Масса конденсата греющего пара
Моделирование смешивающих подогревателей
Особенности моделирования конденсатора
Эквивалентирование подогревателей
Моделирование турбогенераторов
Моделирование энергосистем
Математическое моделирования парогенераторов
Моделирование системы топливоподачи
Моделирование топки
Моделирование конвентивного газохода
Моделирование активной зоны реактора
Уравнение кинетики реактора
Моделирование промежуточных контуров
Температуры теплоносителя в теплоотдающей части
Компенсаторы объема
Моделирование парогенераторов с многократной циркуляцией
Моделирование прямоточных парогенераторов
Моделирование питательного клапана парогенераторов
Структурные схемы парогенераторов
Сопротивление тракта пароперегревателя
Уравнение паропровода
Динамика регулирования энергоблока
Моделирование газового промперегревателя
Моделирование парового промперегревателя
Регулирование блоков в мощных энергосистемах
Автоматическое регулирование возбуждения
Мощностные характеристики турбогенераторов
Плановые и неплановые изменения нагрузки
Регулирование частоты в энергосистеме
Регулирование мощности
Регулирование перетоков мощности по МСС
Статическая устойчивость
Взаимное согласование параметров РОМ и АСР турбины
Динамическая устойчивость
Требования к статическим и динамическим характеристикам
Регулирование паровых турбин
Динамические характеристики мощных паровых турбин
Влияние паровых объемов
Амплитудно-фазовая характеристика системы
Влияние промежуточных объемов
Динамические характеристики влажно-паровых турбин
Роль парового промперегрева
Импульсные характеристики турбин
Система регулирования мощных паровых турбин ПО ЛМЗ
Системы регулирования турбин ХТГЗ
Система снабжена ЭГП
Влияние системы регенеративного подогрева
Динамическая структура объекта регулирования
Динамика регулирования при наборе нагрузки
Регенеративные отборы пара
Регулирование котлов
Регулирование питания прямоточных котлов
Регулирование температуры перегрева пара
Возможности регулирования температуры перегрева
Аккумулирующая способность котла
Настройка отдельных регуляторов
Принципы регулирования ядерных реакторов
Возрастание потока нейтронов
Регулирование нейтронной мощности
Система управления и защиты
Борное регулирование
Роль температурного эффекта реактивности
Неоновое отравление реактора
Регулирование конденсаторных энергоблоков
Взаимное влияние парогенератора и турбины
Математическая модель ядерного энергоблока
Контуры регулирования основных регулируемых величин
Регулирование энергоблоков ТЭС
Передаточная функция и частотные характеристики
Первичное управление котлом
Корректирующие связи в системах
Форсирующие связи
Стабилизирующие связи
Физическая природа
Регулирование энергоблоков
Схемы с задающим регулятором
Управление клапанами турбины
Динамические свойства энергоблоков
Первичное управление котлом
Комбинированное регулирование
Первичное управление котлом
Повышение эффективности участия блока
Типовые схемы АСР энергоблоков
Особенности регулирования энергоблоков АЭС
Недостатки программы регулирования
Применение программы
Блоки с канальными реакторами
Регулирование теплофикационных энергоблоков
Рациональный способ использования пара
Принцип автономности
Физические основы автономного регулирования
Характерные режимы теплофикационной турбины
Критерии автономности
Необходимое условие автономности системы
Условие полной автономности
Схемы регулирования теплофикационных энергоблоков
Нарушения автономности
Схемы регулирования теплофикационных энергоблоков
Электрическая часть АСР
Обще-блочное регулирование
АСР теплофикационного энергоблока
Статическая точность
Привлечения конденсационных энергоблоков ТЭС
Выбор программы регулирования энергоблоков АЭС


Управление клапанами турбины

Переход к СД и КР радикально изменяет функции АСР турбины. При КР лишь в ограниченном диапазоне режимов, где поддерживается ПД, сохраняется обычная роль регулирующих клапанов турбины как основного средства поддержания мощности. В остальной области режимов, а при чисто скользящем давлении во всем регулировочном диапазоне эти клапаны перестают быть регулирующими в строгом смысле этого понятия, поскольку регулирование мощности в равновесных режимах производится изменением давления свежего пара. Клапаны же турбины лишь кратковременно вступают в работу для обеспечения требуемой приемистости, а после перехода котла к новому режиму должны быть возвращены к равновесному положению, определяемому программой регулирования блока. Сказанное не относится к режимам полных сбросов нагрузки, синхронизации генератора и некоторым другим, где функции регулирующих клапанов турбины остаются ведущими.
Для поддержания равновесного положения регулирующих клапанов в АСР турбины должен быть введен специальный элемент — выключатель клапанов, устраняющий воздействие на них со стороны регулятора, ЭГП и МУТ. К настоящему времени предложены различные способы выключения клапанов 168] — гибкая прямая связь, выключающий импульс по давлению свежего пара, импульс по давлению в промежуточной точке проточной части турбины и др. В некоторых случаях для выключения клапанов могут быть использованы регуляторы электрическом мощности генератора или паровой мощности турбины, а также регуляторы положения клапанов. При выборе того или иного типа выключателя следует руководствоваться как желанием обеспечить наилучшее качество процесса регулирования мощности, так и задачей поддержания с заданной точностью равновесного положения клапанов. Некоторые типы выключателей, особенно в схемах со статическим заданием давления свежего пара, могут недостаточно точно выполнять последнее требование. В таких случаях могут быть применены корректирующие регуляторы, представляющие собой ПИ-регуляторы положения клапанов или перепада давления на них.
Статические и динамические свойства выключателя в немалой мере зависят от качества процесса регулирования давления свежего пара. Для обоснованного выбора типа выключателя недостаточно изолированного рассмотрения АСР турбины, а необходим анализ обще-блочного регулирования.