Навигация

 

 Меню раздела

Краткая характеристика развития электрических сетей и систем
Цели и задачи проектирования
Исходные положения проектирования электрических сетей и систем
Краткая характеристика задачи проектирования
Определение потребления электроэнергии
Прогнозирование режимов электропотребления
Средневзвешенный за сутки коэффициент мощности
Выбор источников энергии
Планирование баланса реактивных мощностей в электрической системе
Вопросы организации управления электрическими системами
Построение схем электрических сетей
Краткие сведения о конструктивном исполнении электрической сети
Выбор номинального напряжения электрической сети
Схемы понижающих подстанций
Выбор числа и мощности трансформаторов на подстанции
Указания по выбору вариантов электроснабжения
Баланс реактивной мощности
Общие замечания о технико-экономическом анализе
Капиталовложения и их оценка
Определение потерь мощности и энергии
Годовые эксплуатационные расходы
Приведенные затраты
Учет надежности при проектировании электрических систем и сетей
Показатели надежности и их нормирование
Выбор рационального резерва мощности в электрической системе
Определение ущерба от перерывов электроснабжения
Технико-экономический расчет
Выбор конструкции и сечения проводов электрической сети
Определение капитальных затрат на сооружение сети
Определение годовых эксплуатационных расходов электрической сети
Определение приведенных затрат электрической сети
Краткие сведения о составлении смет
Технико-экономические показатели рекомендуемого варианта
Схема замещения и параметры сети
Приведение нагрузок к высшему напряжению и составление расчетной схемы
Определение потоков мощности в сети
Расчет напряжений
Выбор ответвлений трансформаторов
Регулирование напряжения при помощи трансформаторов с РПН
Регулирование напряжения с помощью автотрансформаторов
Регулирование напряжения при помощи перераспределения потоков
Определение мощности компенсирующих устройств
Выбор ответвлений трансформаторов
Выбор дополнительных средств регулирования напряжения
Оформление результатов электрических расчетов
Расчет потокораспределения мощностей и напряжения
Уравнения узловых напряжений
Обращенная форма уравнений узловых напряжений
Определение коэффициентов уравнений узловых напряжений
Решение уравнений узловых напряжений методом итерации
Метод коэффициентов распределения
Расчет методом контурных уравнений
Расчет методом преобразования сети
Метод обобщенных контурных уравнений
Общая характеристика матричных методов расчета
Выполнение расчетов электрических режимов на ЭВМ
Проектирование средств повышения экономичности
Основные мероприятия по увеличению пропускной способности
Естественное и экономичное распределение мощностей в замкнутых сетях
Выбор параметров трансформаторов с продольно-поперечным регулированием
Применение продольной компенсации в замкнутых сетях
Общий подход к компенсации реактивной мощности в электрической системе
Компенсация реактивных нагрузок в распределительных сетях
Компенсация реактивных нагрузок в питающих сложно замкнутых электрических сетях
Учет особенностей протяженных электропередач при проэктировании
Оптимальное соотношение капиталовложений
Учет емкостных токов линий электропередачи
Выбор основных параметров линии электропередачи
Проектирование механической части воздушных линий
Изыскания трасс воздушных линий
Выбор материала и типа опор
Определение удельных нагрузок
Определение критических пролетов
Систематический расчет проводов и тросов
Выбор и расчет грозозащитного троса
Расчет проводов и тросов в аварийных режимах
Расстановка опор по профилю трассы
Расчет переходов через инженерные сооружения
Расчет монтажных стрел провеса
Защита проводов и тросов от вибрации
Элементы проектирования криогенных систем электропередач
Задачи проектирования
Конструктивное исполнение криогенных линий электропередачи
Определение технико-экономических характеристик криогенных линий
Собственный расход мощности и энергии в криогенных линиях
Расчет и оптимизация конструктивных параметров криогенных линий
Обеспечение надежности работы криогенных линий
Пропускная способность криогенных электропередач
Электрические схемы криогенных электропередач
Определение параметров рефрижераторных станций криогенных линий
Технико-экономические показатели криогенных линий электропередачи
Определение условий совместной экономичной работы
Потери энергии в проводниках при глубоком охлаждении


Учет особенностей протяженных электропередач при проэктировании

Предварительные замечания
В «Основных направлениях развития народного хозяйства СССР на 1976—1980 годы», утвержденных XXV съездом КПСС, в качестве одного из главных направлений развития электроэнергетики намечено продолжение работ по формированию Единой энергетической системы страны путем объединения энергосистем Сибири и Средней Азии с Европейской энергетической системой, сооружения магистральных линий электропередачи напряжением 500, 750 и 1150 кВ. Вследствие этого большое значение приобретают протяженные электропередачи, которые обладают рядом, особенностей по сравнению с обычными электрическими сетями. Так, например, эквивалентное сопротивление линии без потерь с учетом равномерности распределения параметров, где w = у J0- — волновое сопротивление; а = ю YL0C0 — коэффициент изменения фазы на единицу длины линии; L0, С„ — индуктивность и емкость на единицу длины линии; ш. — угловая частота тока; / — длина линии.
Отсюда видно, что эквивалентное сопротивление линий, для которых синус угла а/ примерно равен углу, можно рассчитать умножением единичного сопротивления линии х0 на ее длину /. Для протяженных электропередач (/>300 км) это недопустимо. Параметры таких линий электропередачи должны рассчитываться с учетом равномерности их распределения.
Особенности протяженных электропередач подробно изучаются в курсах «Электрические системы и сети» и «Передача энергии переменным и постоянным током». Здесь напомним только некоторые из этих особенностей и обратим внимание на необходимость их учета при выполнении курсового проекта. Особенности расчета потерь мощности протяженных линий Электропередачи были даны выше.
Из выражений видно, что эквивалентное реактивное сопротивление линии передачи может быть уменьшено за счет волнового сопротивления или волновой длины X линии. Поэтому существуют два вида компенсации.
1. Компенсация волнового сопротивления линии. Для увеличения передаваемой мощности необходимо уменьшить волновое сопротивление линии.
Этого можно достичь путем последовательного или параллельного включения емкостного сопротивления. При последовательном включении емкостного сопротивления волновая длина линии уменьшается, а при параллельном — увеличивается:
Поэтому предпочтение следует отдать последовательному включению:
2. Изменение волновой длины линии. Уменьшить эквивалентное реактивнее сопротивление линии за счет ее волновой длины можно двумя путями: а) компенсацией волновой длины к малому значению (X 0); б) настройкой линии на полуволну (X я).
Уменьшение волновой длины линии дает последовательное включение в линию емкостного сопротивления или параллельное включение индуктивной проводимости, компенсирующей емкость линии. Параллельное включение индуктивности сопровождается увеличением волнового сопротивления линии.
Таким образом, наиболее благоприятным является последовательное включение в линию емкостных сопротивлений, так как при этом уменьшаются и волновая длина, и волновое сопротивление линии.
Настройка линии на полуволну может быть произведена соответствующим изменением рабочей частоты линии, что практически нецелесообразно, или включением в рассечку линии индуктивных элементов и параллельно линии емкостных проводимостей. Напряжение и токи по концам настроенной на полуволну линии без потерь одинаковы по величине и сдвинуты по фазе друг относительно друга на 180°. С точки зрения пропускной способности линии по условиям статической устойчивости компенсация линии к нулевой длине и настройка линии на полуволну равноценны.
В целом для системы передачи шунтирующий реактор играет положительную роль, так как он дает увеличение э. д. с. генератора.
Если исходить из условия, чтобы напряжения в промежуточных точках линии не превышали значения напряжения в начале и конце линии, то наибольшая активная мощность, которую можно передать в режиме полуволны при отсутствии реактивной нагрузки, будет равна натуральной. При передаче по линии реактивной мощности возникают дополнительные пучности напряжения в промежуточных точках линии. Кроме того, возможны перенапряжения при коротких замыканиях: каждая схема, дающая режим полуволны, имеет резонансную точку, по отношению к которой реактивное сопротивление системы передачи равно нулю. При коротком замыкании в этой точке ток короткото замыкания в одной из ветвей системы, а следовательно, разность напряжения на зажимах компенсирующего устройства и напряжения отдельных точек линии относительно земли достигают очень больших значений. Существуют также точки, для которых ток короткого замыкания в начале линии равен нулю, т. е. возникают условия резонанса токов. В таком случае система передачи даже при глухом заземлении нейтрали может оказаться в условиях системы с изолированной нейтралью. Необходимо также заметить, что линия, настроенная на полуволну, из-за включения индуктивных элементов будет обладать низким коэффициентом полезного действия.
Из всего изложенного видно, что наиболее благоприятной из всех видов компенсации по своим возможностям является последовательная компенсация индуктивности линии емкостными элементами, которая дает уменьшение волновой длины и волнового сопротивления Линии.